荻野教授

原著論文・総説(英文)

  1. Kitamura, K., Yamamoto, T., Ochi, H., Suzuki, M., Suzuki, N., Igawa, T., Yoshida, T., Futakuchi, M., Ogino, H. and *Michiue, T. Identification of tumor-related genes via RNA sequencing of tumor tissues in Xenopus tropicalis. Sci. Rep. 13: 13214. (http://doi.org/10.1038/s41598-023-40193-7)
  2. Hossain, N., Igawa, T., Suzuki, M., Tazawa, I., Nakao, Y., Hayashi, T., Suzuki, N. and *Ogino, H. Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution. Dev. Growth. Differ. Epub ahead of print. (https://doi.org/10.1111/dgd.12884)
  3. Ishii, R., Yoshida, M., Suzuki, N., Ogino, H. and *Suzuki, M. X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration. Dev Growth Differ. Epub ahead of print. (https://doi.org/10.1111/dgd.12881)
  4. *Ogino, H., Kamei, Y., Hayashi, T., Sakamoto, J., Suzuki, M., Igawa, T., Kondo, M. and Taira M. Invention sharing is the mother of developmental biology (part 4). Dev Growth Differ. 65:286-287 (2023) (https://doi.org/10.1111/dgd.12883)
  5. *Ogino, Y., Ansai, S., Watanabe, E., Yasugi, M., Katayama, Y., Sakamoto, H., Okamoto, K., Okubo, K., Yamamoto, Y., Hara, I., Yamazaki, T., Kato, A., Kamei, Y., Naruse, K., Ohta, K., Ogino, H., Sakamoto, T., Miyagawa, S., Sato, T., Yamada, G., Baker, ME. and Iguchi, T. Evolutionary differentiation of androgen receptor is responsible for sexual characteristic development in a teleost fish. Nat. Commun. 14: 1428 (2023) (https://doi.org/10.1038/s41467-023-37026-6)
  6. Durant-Vesga, J., Suzuki, N., Ochi, H., Le Bouffant, R., Eschstruth, A., Ogino, H., Umbhauer, M. and Riou, JF. Retinoic acid control of pax8 during renal specification of Xenopus pronephros involves hox and meis3. Dev. Biol., 493: 17-28 (2022) (https://doi.org/10.1016/j.ydbio.2022.10.009)
  7. Suzuki, N., Kanai, A., Suzuki, Y., Ogino, H. and *Ochi, H. Adrenergic receptor signaling induced by Klf15, a regulator of regeneration enhancer, promotes kidney reconstruction. Proc. Natl. Acad. Sci. USA 119: e2204338119 (2022) (https://doi.org/10.1073/pnas.2204338119)
  8. Tanouchi, M., Igawa, T., Suzuki, N., Suzuki, M., Hossain, N., Ochi, H. and *Ogino, H. Optimization of CRISPR/Cas9-mediated gene disruption in Xenopus laevis using a phenotypic image analysis technique. Dev Growth Differ. 64: 219-225 (2022) (https://doi.org/10.1111/dgd.12778)
  9. *Ogino, H., Kamei, Y., Hayashi, T., Sakamoto, J., Suzuki, M. and Igawa, T. Invention sharing is the mother of developmental biology (Part 3). Dev Growth Differ. 64: 4 (2022) (https://doi.org/10.1111/dgd.12770)
  10. Uemasu, H., Ikuta, H., Igawa, T., Suzuki, M., Kyakuno, M., Iwata, Y., Tazawa, I., Ogino, H., Satoh, Y., Takeuchi, T., Namba, N. and *Hayashi, T. Cryo-injury procedure-induced cardiac regeneration shows unique gene expression profiles in the newt Pleurodeles waltl. Dev. Dyn. 251: 864–876 (2022) (https://doi.org/10.1002/dvdy.450)
  11. *Ogino, H., Kamei, Y., Hayashi, T., Sakamoto, J., Suzuki, M. and Igawa, T. Invention sharing is the mother of developmental biology (Part 2). Dev Growth Differ., 63: 458 (2021) (https://10.1111/dgd.12763)
  12. *Ogino, H., Kamei, Y., Hayashi, T., Sakamoto, J., Suzuki, M. and Igawa, T. Invention sharing is the mother of developmental biology. Dev Growth Differ., 63: 395-396 (2021) (https://doi.org/10.1111/dgd.12755)
  13. Suzuki, M., Igawa, T., Suzuki, N., Ogino, H. and *Ochi, H. Spontaneous neoplasia in the western clawed frog Xenopus tropicalis. MicroPub. Biol., (2020) (https://doi.org/10.17912/micropub.biology.000294)
  14. *Lau, Q., Igawa, T., Ogino, H., Katsura, Y., Ikemura, T. and Satta, Y. Heterogeneity of synonymous substitution rates in the Xenopus frog genome. PLoS One., 15: e0236515 (2020) (https://doi.org/10.1371/journal.pone.0236515).
  15. *Igawa, T., Okamiya, H., Ogino, H. and Nagano, M. Complete mitochondrial genome of Hynobius dunni (Amphibia, Caudata, Hynobiidae) and its phylogenetic position. Mitochondrial DNA B Resour., 5: 2241-2242 (2020) (https://doi.org/10.1371/journal.pone.0236515)
  16. Oda, M., Ogino, H., Kubo, Y. and *Saitoh, O. Functional properties of axolotl transient receptor potential ankyrin 1 revealed by the heterologous expression system. NeuroReport 30: 323-330 (2019) (https://doi.org/10.1097/WNR.0000000000001197)
  17. Suzuki, N., Hirano, K., Ogino, H. and Ochi H., Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers. eLife 8: e43186 (2019) (doi: 10.7554/eLife.43186).
  18. An, Y., Kawaguchi, A., Zhao, C., Toyoda, A., Sharifi-Zarchi, A., Mousavi, SA., Bagherzadeh, R., Inoue, T., Ogino, H., Fujiyama, A., Chitsaz, H., Baharvand H., Agata K. Draft genome of Dugesia japonica provides insights into conserved regulatory elements of the brain restriction gene nou-darake in planarians. Zool. Lett. 4:1-12 (2018) (DOI: 10.1186/s40851-018-0102-2).
  19. Ochi, H., Kawaguchi, A., Tanouchi, M., Suzuki, N., Kumada, T., Iwata, Y. and *Ogino, H. Co-accumulation of cis-regulatory and coding mutations during the pseudogenization of the Xenopus laevis homoeologs L and six6.S. Dev. Biol., 427: 84-92 (2017) (doi: 10.1016/j.ydbio.2017.05.004).
  20. Ochi, H., Suzuki, N., Kawaguchi, A. and Ogino, H. Asymmetrically reduced expression of hand1 homeologs involving a single nucleotide substitution in a cis-regulatory element. Dev. Biol., 425: 152-160 (2017) (doi: 10.1016/j.ydbio.2017.03.021).
  21. Watanabe, M., Yasuoka, Y., Mawaribuchi, S., Kuretani, A., Ito, M., Kondo, M., Ochi, H., Ogino, H., Fukui, A., Taira, M. and *Kinoshita, T. Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis. Dev.Biol., 426: 301-324 (2017) (doi: 10.1016/j.ydbio.2016.09.017).
  22. Session, M. A., Uno, Y., Kwon, T., Chapman, J. A., Toyoda, A., Takahashi, S., Fukui, A., Hikosaka, A., Suzuki, A., Kondo, M., van Heeringen, S. J., Quigley, I., Heinz, S., Ogino, H., Ochi, H., Hellsten, U., Lyons, J. B., Simakov, O., Putnam N., Stites, J., Kuroki, Y., Tanaka, T., Michiue, T., Watanabe, M., Bogdanovic, O., Lister, R., Georgiou, G., Paranjpe, S. S., van Kruijsbergen, I., Shengquiang, S., Carlson, J., Kinoshita, T., Ohta, Y., Mawaribuchi, S., Jenkins, J., Grimwood, J., Schmutz, J., Mitros, T., Mozaffari, S. V., Suzuki, Y., Haramoto, Y., Yamamoto, T. S., Takagi, C., Heald, R., Miller, K., Haudenschild, C., Kitzman, J., Nakayama, T., Izutsu, Y., Robert, J., Fortriede, J., Burns, K., Lotay, V., Karimi, K., Yasuoka, Y., Dichmann, D. S., Flajnik, M. F., Houston, D. W., Shendure, J., DuPasquier, L., Vize, P. D., Zorn, A. M., Ito, M., Marcotte, E., Wallingford, J. B., Ito, Y., Asashima, M., Uneo, N., Matsuda, Y., Veenstra, G. J. C., Fujiyama, A., *Harland, R. M., *Taira, M., *Rokhsar, D. S. Genome evolution in the allotetraploid frog Xenopus laevis. Nature, 538: 336-343 (2016) (doi: 10.1038/nature19840).
  23. Aoki, H., Ogino, H., Tomita, H., Hara, A. and *Kunisada, T.Disruption of Rest Leads to the Early Onset of Cataracts with the Aberrant Terminal Differentiation of Lens Fiber Cells.PLoS One. 11: e0163042 (2016) (doi: 10.1371/journal.pone.0163042)
  24. Suzuki, N., Hirano, K., Ogino, H. and *Ochi, H.Identification of distal enhancers for Six2 expression in pronephros. J. Dev. Biol. 59: 241-246 (2015) (doi: 10.1387/ijdb.140263ho).
  25. Hayashi, S., Kawaguchi, A., Uchiyama, I., Kawasumi-Kita, A., Kobayashi, T., Nishide, H., Tsutsumi, R., Tsuru, K., Inoue, T., Ogino, H., Agata, K., Tamura, K. and *Yokoyama, H.Epigenetic modification maintains intrinsic limb-cell identity in Xenopus limb bud regeneration.Dev. Biol., 406: 271-282 (2015) (doi:10.1016/j.ydbio.2015.08.013).
  26. Hayashi, S., Ochi, H., Ogino, H., Kawasumi, A., Kamei, Y., Tamura, K. and *Yokoyama, H. Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail. Dev. Biol. 396: 31-41 (2014) (doi:10.1016/j.ydbio.2014.09.018)
  27. Omori, A., Miyagawa, S., Ogino, Y., Harada, M., Ishii, K., Sugimura, Y., Ogino, H., Nakagata, N. and *Yamada, Essential roles of epithelial bone morphogenetic protein signaling during prostatic development. Endocrinology 155: 2534-2544 (2014) (doi: 10.1210/en.2013-2054).
  28. Yajima, H., Suzuki, M., Ochi, H., Ikeda, K., Sato, S., Yamamura, K. I., Ogino, H., Ueno, N. and *Kawakami, K. Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biol. 12: 40 (2014) (doi:10.1186/1741-7007-12-40).
  29. *Ochi, H., Kawaguchi, A. and Ogino, H. Differential use of paralogous genes via evolution of cis-regulatory elements for divergent expression specificities. New Principles in Developmental Processes, Kondoh, H. and Kuroiwa, A. (ed), Chapter 21 (p279-290), Springer, ISBN 978-4-431-54634-4 (2014).
  30. Nabeshima, A., Nishibayashi, C., Ueda, Y., Ogino, H. and *Araki, M. Loss of cell-extracellular matrix interaction triggers retinal regeneration accompanied by Rax and Pax6. Genesis 51: 410-419 (2013) (doi: 10.1002/dvg.22378).
  31. Ochi, H., Tamai, T., Nagano, H., Kawaguchi, A., Sudou, N. and *Ogino, H. Evolution of a tissue-specific silencer underlies divergence in the expression of pax2 and pax8. Nature Communications 3: 848 (2012).
  32. Kawaguchi, A., Ochi, H., Sudou, N. and *Ogino, H. Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus. J. Dev. Biol. 56: 295-300 (2012).
  33. Sudou, N., Yamamoto, S., Ogino, H. and *Taira, M. Dynamic in vivo binding of transcription factors to cis-regulatory modules of cer and gsc in the stepwise formation of the Spemann-Mangold organizer. Development 139: 1651-1661 (2012).
  34. *Ogino, H., Ochi, H., Reza, H. M. and Yasuda, K. Transcription factors involved in lens development from the preplacodal ectoderm. Dev. Biol. 363: 333-347 (2012).
  35. *Ogino, H., Ochi, H., Uchiyama, C., Louie, S. and Grainger, R. M. Comparative genomics-based identification and analysis of cis-regulatory elements. Methods in Molecular Biology, Xenopus Protocols, 2nd edition: Post-Genomic Approaches, Chapter 17, Humana press, ISBN-10: 1617799912; ISBN-13: 978-1617799914 (2012).
  36. *Yokoyama, Y., Maruoka, T., Ochi, H., Aruga, A., Ohgo, S., Ogino, H. and Tamura, K. Different requirement for Wnt/β-catenin signaling in limb regeneration of larval and adult. PLoS ONE 6(7): e21721 (2011).
  37. Sato, S., Ikeda, K., Shioi, G., Ochi, H., Ogino, H., Yajima, H. and *Kawakami, K. Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR. Dev. Biol. 344: 158-171 (2010).
  38. *Hellsten, U., Harland, R. M., Gilchrist, M. J., Hendrix, D. Jurka, J., Kapitonov, V., Ovcharenko, I., Putnam, N. H., Shu, S., Taher, L., Blitz, I. L., Blumberg, B., Dichmann, D. S., Dubchak, I., Amaya, E., Fletcher, R., Gerhard, D., Goodstein, D., Graves, T., Grigoriev, I. V., Grimwood, J., Kawashima, T., Lindquist, E., Mead, P. E., Mitros, T., Ogino, H., Ohta, Y., Poliakov, A. V., Pollet, N., Robert, J., Salamov, S., Sater, A. K., Schmutz, J., Terry, S., Vize, P. D., Warren, W. C., Wells, D., Wills, A., Zimmerman, L. B., Zorn, A. M., Grainger, R., Grammer, T., Khokha, M. K., Richardson, P. M. and Rokhsar, D. S. The genome of the western clawed frog Xenopus tropicalis. Science 328: 633-636 (2010).
  39. Kurokawa, D., Ohmura, T., Ogino, H., Takeuchi, M., Inoue, A., Inoue, F., Suda, Y. and *Aizawa, S. Evolutionary origin of the Otx2 enhancer for its expression in visceral endoderm.Dev. Biol. 342: 110-120 (2010).
  40. *Ogino, H. and Ochi, H. Resources and transgenesis techniques for functional genomics in Xenopus. Growth Differ. 51: 387-401 (2009).
  41. Ogino, H., Fisher, M. and *Grainger, R. M. Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification. Development135: 249-258 (2008).
  42. Yokoyama, H., Ogino, H., Stoick-Cooper, C. L., Grainger, R. M. and *Moon, R. T. Wnt/b-catenin signaling has an essential role in the initiation of limb regeneration. Dev. Biol. 306: 170-178 (2007).
  43. Ogino, H., McConnell, W. B. and *Grainger, R. M. High-throughput transgenesis in Xenopus using I-SceI. Nature Protocol 1: 1703-1710 (2006).
  44. Ogino, H., McConnell, W. B. and *Grainger, R. M. Highly efficient transgenesis in Xenopus tropicalis using I-SceI. Mech. Dev. 123: 103-113 (2006).
  45. Ochi, H., Sakagami, K., Ishii, A., Morita, N., Nishiuchi, M., Ogino, H. and *Yasuda, K. Temporal expression of L-Maf and RaxL in developing chicken retina are arranged into mosaic pattern. Gene Expr. Patterns 4: 489-494 (2004).
  46. Peng, J., Riggs, B. L., Ogino, H. and *Blumberg, B. Construction of a set of full-length enriched cDNA libraries as genomics tools for Xenopus tropicalis. Current Genomics 4: 635-644 (2003).
  47. Ochi, H., Ogino, H., Kageyama, Y. and *Yasuda, K. The stability of the lens-specific Maf protein is regulated by FGF/ERK signaling in lens fiber differentiation. Biol. Chem. 278: 537-544 (2003).
  48. Hirsch, N., Zimmerman, L. B., Gray, J., Chae, J., Curran, K. L., Fisher, M., Ogino, H. and *Grainger, R. M. Xenopus tropicalis transgenic lines and their use in the study of embryonic induction. Dev. Dyn. 225: 522-535 (2002).
  49. Reza, H. M., Ogino, H. and *Yasuda, K. L-Maf, a downstream target of Pax6, is essential for chick lens development. Dev. 116: 61-73 (2002).
  50. Kajihara, M., Kawauchi, S., Kobayashi, M., Ogino, H., Takahashi, S. and *Yasuda, K. Isolation, characterization, and expression analysis of zebrafish large Mafs. Biochem. 129: 139-146 (2001).
  51. *Ogino, H. and Yasuda, K. Sequential activation of transcription factors in lens induction. Growth Differ. 42: 437-448 (2000).
  52. Kawauchi, S., Takahashi, S., Nakajima, O., Ogino, H., Morita, M., Nishizawa, M., Yasuda, K. and *Yamamoto, M. Regulation of lens fiber cell differentiation by transcription factor c-Maf. Biol. Chem. 274: 19254-19260 (1999).
  53. Ogino, H. and *Yasuda, K. Induction of lens differentiation by activation of a bZIP transcription factor, L-Maf. Science 280:115-118 (1998).
  54. Duncan, M. K., Li, X., Ogino, H., Yasuda, K. and *Piatigorsky, J. Developmental regulation of the chicken bB1-crystallin promoter in transgenic mice. Dev. 57:79-89 (1996).

日本語総説

  1. *荻野 肇 全ゲノム重複に伴うシス調節配列の進化.生体の科学 66: 256-260 (2015)
  2. *荻野 肇,Hasan Mahmud Reza,阪上起世,安田國雄 転写因子の異所的発現と機能阻害 眼形成の分子機構へのアプローチ.細胞工学 18: 1556-1561(1999)
  3. *安田國雄,荻野 肇 L-Mafによる水晶体分化の誘導.実験医学 16: 1571-1573 (1998)
  4. *荻野 肇,安田國雄 クリスタリン遺伝子発現制御とmafファミリー.蛋白質核酸酵素 41: 1050-1057 (1996)
  5. *荻野 肇,安田國雄 水晶体分化とmaf遺伝子ファミリー.細胞工学 14: 774-780 (1995)
  6. *安田國雄,松尾勲,仁田正弘,荻野 肇 クリスタリン遺伝子の組織特異的な発現にかかわる転写制御因子.実験医学 11: 992-998 (1993)
  7. *安田國雄,松尾勲,荻野 肇 aA-クリスタリン遺伝子の転写制御.実験医学 10: 1656-1662 (1992)

著書

  1. *荻野 肇「1枚の写真館—研究は手を替え品を替え」細胞工学(秀潤社),34 (4), 343 (2015)
  2. *荻野 肇「ルシフェラーゼアッセイ」別冊実験医学 ザプロトコールシリーズ non-RI実験の最新プロトコール(羊土社), 145-150 (1999)
  3. *荻野 肇「mafファミリー」Bioscience新用語ライブラリー 転写因子 第2版(羊土社),192-193 (1999)
  4. *荻野 肇,安田國雄「c-maf」BioScience 用語ライブラリー (羊土社),198-199 (1995)
  5. *安田國雄,荻野 肇「サウスウェスタン法」バイオマニュアルシリーズ5 転写因子研究法(羊土社), 177-188 (1993)

井川准教授 (2017年以降)

原著論文(英文)

  1. *Ogino H, Kamei Y, Hayashi T, Sakamoto J, Suzuki M, Igawa T, Kondo M, Taira M, Invention sharing is the mother of developmental biology (part 4). Development Growth & Differentiation 65: 286-287 August 2023. [ DOI | http | PDF ]
  2. Kitamura K, Yamamoto T, Ochi H, Suzuki M, Suzuki N, Igawa T, Yoshida T, Futakuchi M, Ogino H, *Michiue T, Identification of tumor-related genes via RNA sequencing of tumor tissues in Xenopus tropicalisScientific Reports 13: 13214 August 2023. [ DOI | http | PDF ]
  3. Hossain N, Igawa T, Suzuki M, Tazawa I, Nakao Y, Hayashi T, Suzuki N, *Ogino H, Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution. Development Growth & Differentiation Epub ahead of print July 2023. [ DOI | http | PDF ]
  4. Lau Q, Igawa T, Kosch TA, Dharmayanthi AB, Berger L, Skerratt LF, *Satta Y, Conserved evolution of MHC supertypes among Japanese frogs suggests selection for Bd resistance. Animals 13: 2121 June 2023. [ DOI | http | PDF ]
  5. Asaeda Y, Shiraga K, Suzuki M, Sambongi Y, Ogino H, *Igawa T, Rapid and collective determination of the complete “hot-spring frog” mitochondrial genome containing long repeat regions using Nanopore sequencing. PLoS One (in press). (preprint@bioRxiv)
  6. *Hasan M, Kurniawan N, Soewondo A, Nalley WMM, Matsui M, Igawa T, Sumida M, Postmating isolation and evolutionary relationships among Fejervarya species from Lesser Sunda, Indonesia and other Asian countries revealed by crossing experiments and mtDNA Cytb sequence analyses.  Ecology and Evolution: e9436 October 2022. [ DOI | http | PDF ]
  7. *Saito S, Saito CT, Igawa T, Takeda N, Komaki S, Ohta T, Tominaga M, Evolutionary tuning of TRPA1 underlies the variation in heat avoidance behaviors among frog species inhabiting diverse thermal niches. Molecular Biology and Evolution 39: msac238 August 2023 [ DOI | http | PDF ]
  8. *Fujii S, Somei K, Asaeda Y, Igawa T, Hattori K, Yoshida T, Sambongi Y, Heterologous expression and biochemical comparison of two homologous SoxX proteins of endosymbiontic Candidatus Vesicomyosocius okutanii and free-living Hydrogenovibrio crunogenus from deep-sea environments. Protein Expression and Purification 200: 106157 August 2022. [ DOI | http | PDF ]
  9. Ogata S, Doi H, Igawa T, Komaki S, *Takahara T, Environmental DNA methods for detecting two invasive alien species (American bullfrog and red swamp crayfish) in Japanese ponds. Ecology Research (published online) [ DOI | http | PDF ]
  10. Yoshimi T, Fujii S, Oki H, Igawa T, Adams HR, Ueda K, Kawahara K, Ohkubo T, Hough MA, *Sambongi Y, Crystal structure of thermally stable homodimeric cytochrome c’-beta from Thermus thermophilus. Acta Crystallographica Section F78: 217-225 May 2022. [ DOI | http | PDF ]
  11. Tanouchi M, Igawa T, Suzuki N, Suzuki M, Hossain N, Ochi H, *Ogino H, Optimization of CRISPR/Cas9-mediated gene disruption in Xenopus laevis using a phenotypic image analysis technique. Development Growth and Differentiation 64: 219-225 May 2022. [ DOI | http | PDF ]
  12. Uemasu H, Ikuta H, Igawa T, Suzuki M, Kyakuno M, Iwata Y, Tazawa I, Ogino H, Satoh Y, Takeuchi T, Namba N, *Hayashi T, Cryo-injury procedure-induced cardiac regeneration shows unique gene expression profiles in the newt Pleurodeles waltlDevelopmental Dynamics 251: 864-876 May 2022. [ DOI | http | PDF ]
  13. *Ogino H, Kamei Y., Hayashi T, Sakamoto J, Suzuki M, Igawa, T, Invention sharing is the mother of developmental biology (Part 3). Development Growth & Differentiation 64: 4 January 2022. [ DOI | http | PDF ]
  14. *Ogino H, Kamei Y., Hayashi T, Sakamoto J, Suzuki M, Igawa, T, Invention sharing is the mother of developmental biology (Part 2). Development Growth & Differentiation 63: 458-458 December 2021. [ DOI | http | PDF ]
  15. *Ogino H, Kamei Y., Hayashi T, Sakamoto J, Suzuki M, Igawa, T, Invention sharing is the mother of developmental biology. Development Growth & Differentiation 63: 395–396 October 2021. [ DOI | http | PDF ]
  16. Komaki S, Matsunami M, Lin JW , Lee KH, Lin YP , Lee Y, Lin SM, *Igawa T, Transcriptomic changes in hot spring frog tadpoles (Buergeria otai) in response to heat stress. Frontiers in Ecology and Evolution 9: 658 October 2021. [ DOI | http | PDF ]
  17. Hata A, Takenouchi A, Kinoshita K, Hirokawa M, Igawa T, *Nunome M, *Suzuki T, *Tsudzuki M, Geographic origin and genetic characteristics of Japanese indigenous chickens inferred from mitochondrial D-loop region and microsatellite DNA markers. Animals 10: 2074 November 2020. [ DOI | http | PDF ] 
  18. *Komaki S, Sutoh Y, Kobayashi K, Saito S, Saito CT, Igawa T, Lau Q, Hot spring frogs (Buergeria japonica) prefer cooler water to hot water. Ecology and Evolution 10: 9466-9473 September 2020. [ DOI | http | PDF ] 
  19. Suzuki M, Igawa T, Suzuki N, Ogino H, *Ochi H, Spontaneous neoplasia in the western clawed frog Xenopus tropicalis. microPublication Biology August 2020. [ DOI | http | PDF ]
  20. *Lau Q, Igawa T, Ogino H, Katsura Y, Ikemura T, Satta Y, Heterogeneity of synonymous substitution rates in the Xenopus frog genome. PLoS One 15(8): e0236515 August 2020. [ DOI | http | PDF ]
  21. *Igawa T, Okamiya H, Ogino H, Nagano M, Complete mitochondrial genome of Hynobius dunni (Amphibia, Caudata, Hynobiidae) and its phylogenetic position. Mitochondrial DNA Part B 5(3): 2241-2242 Jun 2020. [ DOI | http | PDF ]
  22. *Takahara T, Iwai N, Yasumiba K, Igawa T, Comparison of the detection of 3 endangered frog species by eDNA and acoustic surveys across three seasons. Freshwater Science  39: 18-27 February 2020. [ DOI | http | PDF ]
  23. *Igawa T, Sugawara H, Honda M, Tominaga A, Oumi S, Katsuren S, Ota H, Matsui M, Sumida M, Detecting inter- and intra-island genetic diversity: population structure of the endangered crocodile newt, Echinotriton andersoni, in the Ryukyus. Conservation Genetics 21: 13-26 February 2020. [ DOI | http | PDF ]
  24. *Lau Q, Igawa T, Komaki S, Satta Y, Expression Changes of MHC and other Immune Genes in Frog Skin during Ontogeny. Animals 10: 91 January 2020. [ DOI | http | PDF ]
  25. *Igawa T, *Takahara T, Lau Q, Komaki S, An application of PCR-RFLP species identification assay for environmental DNA detection. PeerJ 7: e7597 October 2019. [ DOI | http | PDF ] 
  26. Horb M, Wlizla M, Abu-Daya A, MacNamara S, Gajdasik D, Igawa T, Suzuki A, Ogino H, Noble A, Centre de Ressource Biologique Xenope Team in France, Robert J, James-Zorn C, *Guille M.  Xenopus Resources: Transgenic, Inbred and Mutant Animals, Training Opportunities, and Web-Based Support. Frontiers in Physiology 10: 387 April 2019. [ DOI | http | PDF ] 
  27. Ono T, Ohara K, Ishikawa A, Kouguchi T, Nagano AJ, Takenouchi A, Igawa T, *Tsudzuki M. Mapping of Quantitative Trait Loci for Growth and Carcass-Related Traits in Chickens Using a Restriction-Site Associated DNA Sequencing Method. The Journal of Poultry Science 56: 166-176 July 2019 [ DOI | http | PDF ]
  28. Ono T, Kouguchi T, Ishikawa A, Nagano AJ, Takenouchi A, Igawa T, *Tsudzuki M. Quantitative Trait Loci Mapping for the Shear Force Value in Breast Muscle of F2 Chickens. Poultry Science 98: 1096-1101 March 2019. [ DOI | http | PDF ]
  29. Lau, Q., Igawa, T., Kosch., TA, and Satta, Y. Selective constraint acting on TLR2 and TLR4 genes of Japanese Rana frogs. PeerJ 6:e4842. (2018). [ DOI | http | PDF ]
  30. Lau. Q., Igawa, T., Minei, R., Kosch, TA., and Satta, Y.. Transcriptome analyses of immune tissues from three Japanese frogs (genus Rana) reveals their utility in characterizing major histocompatibility complex class II. BMC Genomics 18: 994 (2017). [ DOI | http | PDF ]
  31. Igawa, T., Nozawa, M., Suzuki, D.G., Reimer, J.D., Morov, A.R., Wang, Y., Henmi, Y., and *Yasui, K. Evolutionary history of the extant amphioxus lineage with shallow-branching diversification. Scientific Reports. 7: 1157 (2017). [ DOI | http | PDF ]
  32. *Okamiya, H., *Igawa, T., Nozawa, M., Sumida, M., and Kusano, T. Development and Characterization of 23 Microsatellite Markers for the Montane Brown Frog (Rana ornativentris). Current Herpetology. 36: 63-68 (2017). [ DOI | http | PDF ]
  33. Komaki, S., Lin, S.-M., Nozawa, M., Oumi, S., Sumida, M., and *Igawa, T. Fine-scale demographic processes resulting from multiple overseas colonization events of the Japanese stream tree frog, Buergeria japonica. Journal of Biogeography. 44: 1586-1597 (2017). [ DOI | http | PDF ]

鈴木助教

原著論文・総説(英文)

  1. Kitamura, K., Yamamoto, T., Ochi, H., Suzuki, M., Suzuki, N., Igawa, T., Yoshida, T., Futakuchi, M., Ogino, H. & *Michiue, T. Identification of tumor-related genes via RNA sequencing of tumor tissues in Xenopus tropicalis. Scientific Reports, 13, 13214, 2023.
  2. Hossain, N., Igawa, T., Suzuki, M., Tazawa, I., Nakao, Y., Hayashi, T., Suzuki, N. & *Ogino, H. Phenotype-genotype relationships in Xenopus sox9 crispants provide insights into campomelic dysplasia and vertebrate jaw evolution. Development, Growth & Differentiation, Epub ahead of print.
  3. Ishii, R., Yoshida, M., Suzuki, N., Ogino, H. & *Suzuki, M. X-ray micro-computed tomography of Xenopus tadpole reveals changes in brain ventricular morphology during telencephalon regeneration. Development, Growth & Differentiation, Epub ahead of print.
  4. *Ogino, H., Kamei, Y., Hayashi, T., Sakamoto, J., Suzuki, M., Igawa, T., Kondo, M. & Taira M. Invention sharing is the mother of developmental biology (part 4). Development, Growth & Differentiation, 65, 286-287, 2023
  5. Tanouchi, M., Igawa, T., Suzuki, N., Suzuki, M., Hossain, N., Ochi, H. & *Ogino, H. Optimization of CRISPR/Cas9-mediated gene disruption in Xenopus laevis using a phenotypic image analysis technique. Development, Growth & Differentiation, 64, 219-225, 2022.
  6. *Ogino, H., Kamei, Y., Hayashi, T., Sakamoto, J., Suzuki, M. & Igawa, T. Invention sharing is the mother of developmental biology (Part 3). Development, Growth & Differentiation, 64, 4, 2022.
  7. Koyama, H., Suzuki, M., Yasue N., Sasaki, H., Ueno, N., & Fujimori, T. Differential cellular stiffness contributes to tissue elongation on an expanding surface. Frontiers in cell and developmental biology, 10, 864135-864135, 2022.
  8. Uemasu, H., Ikuta, H., Igawa, T., Suzuki, M., Kyakuno, M., Iwata, Y., Tazawa, I., Ogino, H., Satoh, Y., Takeuchi, T., Namba, N. & *Hayashi, T. Cryo-injury procedure-induced cardiac regeneration shows unique gene expression profiles in the newt Pleurodeles waltl. Developmental Dynamics, 251, 864–876, 2022.
  9. *Ogino, H., Kamei, Y., Hayashi, T., Sakamoto, J., Suzuki, M. & Igawa, T. Invention sharing is the mother of developmental biology (Part 2). Development, Growth & Differentiation, 63, 458, 2021.
  10. *Ogino, H., Kamei, Y., Hayashi, T., Sakamoto, J., Suzuki, M. & Igawa, T. Invention sharing is the mother of developmental biology. Development, Growth & Differentiation, 63, 395-396, 2021.
  11. Suzuki, M., Igawa, T., Suzuki, N., Ogino, H. & *Ochi, H. Spontaneous neoplasia in the western clawed frog Xenopus tropicalis. MicroPub. Biol., 2020.
  12. Kinoshita, N., Hashimoto, Y., Yasue, N., Suzuki, M. Cristea, I.M.* & *Ueno N.* (*Co-corresponding authors) Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis. Cell Reports, 30, 3875-3888.e3, 2020.
  13. Harris, A., Siggers, P., Corrochano, S., Warr, N., Sagar, D., Grimes, D.T., Suzuki, M., Burdine, R.D., Cong, F., Koo, B.K., Clevers, H., Stévant, I., Nef, S., Wells, S., Brauner, R., Ben Rhouma, B., Belguith, N., Eozenou, C., Bignon-Topalovic, J., Bashamboo, A., McElreavey, K.* & Greenfield, A.* (*Co-corresponding authors) ZNRF3 functions in mammalian sex determination by inhibiting canonical WNT signaling. Proc. Natl. Acad. Sci. USA, 115, 5474-5479, 2018.
  14. Shinoda, T.*, Nagasaka, A., Inoue, Y., Higuchi, R., Minami, Y., Kato, K., Suzuki, M., Kondo, T., Kawaue, T., Saito, K., Ueno, N., Fukazawa, Y., Nagayama, M., Miura, T., Adachi, T. & Miyata, T.* (*Co-corresponding authors) Elasticity-based boosting of neuroepithelial nucleokinesis via indirect energy transfer from mother to daughter. PLoS Biology, 16, e2004426, 2018.
  15. Yokoyama, H.*, Kudo, N., Todate, M., Shimada, Y., Suzuki, M., & Tamura, K. Skin regeneration of amphibians: A novel model for skin regeneration as adults. Development, Growth & Differentiation, 60, 316-325, 2018.
  16. Suzuki, M.*, Sato, M., Koyama, H., Hara, Y., Hayashi, K., Yasue, N., Imamura, H., Fujimori, T., Nagai, T., Campbell, R.E. & Ueno, N.* (*Co-corresponding authors) Distinct intracellular Ca2+ dynamics regulate apical constriction and differentially contribute to neural tube closure. Development, 144, 1307-1316, 2017.
  17. Inoue, Y.*, Suzuki, M., Watanabe, T., Yasue, N., Tateo, I., Adachi, T. & Ueno, N. Mechanical roles of apical constriction, cell elongation, and cell migration during neural tube formation in Xenopus. Biomechanics and Modeling in Mechanobiology, 15, 1733-1746, 2016.
  18. Koyama, H.*, Shi, D., Suzuki, M., Ueno, N., Uemura, T. & Fujimori, T.* (*Co-corresponding authors) Mechanical regulation of three-dimensional epithelial fold pattern formation in the mouse oviduct. Biophysical Journal, 111, 650-665, 2016.
  19. Nagasaka, A., Shinoda, T., Kawaue, T., Suzuki, M., Nagayama, K., Matsumoto, T., Ueno, N., Kawaguchi, A. & Miyata, T.* Differences in the mechanical properties of the developing cerebral cortical proliferative zone between mice and ferrets at both the tissue and single-cell levels. Frontiers in Cell and Developmental Biology, 4, 139, 2016.
  20. Suzuki, M., Takagi, C., Miura, S., Sakane, Y., Suzuki, M., Sakuma, T., Sakamoto, N., Endo, T., Kamei, Y., Sato, Y., Kimura, H., Yamamoto, T., Ueno, N. & Suzuki, K.T.* In vivo tracking of histone H3 lysine 9 acetylation in Xenopus laevis during tail regeneration. Genes to Cells, 21, 358-369, 2016.
  21. Yajima, H., Suzuki, M., Ochi, H., Ikeda, K., Sato, S., Yamamura, K., Ogino, H., Ueno, N. & Kawakami, K.* Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates. BMC Biology, 12, 40, 2014.
  22. Hara, Y., Nagayama, K., Yamamoto, T.S., Matsumoto, T., Suzuki, M. & Ueno, N.* Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Developmental Biology, 382, 482-495, 2013.
  23. Takagi, C., Sakamaki K., Morita, H., Hara Y., Suzuki, M., Kinoshita, N. & Ueno, N.* Transgenic Xenopus laevis for live imaging in cell and developmental biology. Development, Growth & Differentiation, 55, 422-433, 2013.
  24. Leblond, G.G., Sarazin, H., Li, R., Suzuki, M., Ueno, N. & Liu. X.J.* Translation of incenp during oocyte maturation is required for embryonic development in Xenopus laevis. Biology of Reproduction, 86, 161, 1-8, 2012.
  25. Suzuki, M.*, Morita, H. & Ueno, N.* (*Co-corresponding authors) Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Development, Growth & Differentiation, 54, 266-276, 2012.
  26. Suzuki, M., Hara, Y., Takagi, C., Yamamoto, T.S. & Ueno, N.* MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. Development, 137, 2329-2339, 2010.
  27. Ohgo, S., Itoh, A., Suzuki, M., Satoh, A., Yokoyama, H. & Tamura, K.* Analysis of hoxa11 and hoxa13 expression during patternless limb regeneration in Xenopus. Developmental Biology, 338, 148-157, 2010.
  28. Tao, H., Suzuki, M., Kiyonari, H., Abe, T., Sasaoka, T. & Ueno, N.* Mouse prickle1, the homolog of a PCP gene, is essential for epiblast apical-basal polarity. Proc. Natl. Acad. Sci. USA, 106, 14426-14431, 2009.
  29. Yakushiji, N., Suzuki, M., Satoh, A., Ide, H. & Tamura, K.* Effects of activation of Hedgehog signaling on patterning, growth and differentiation in Xenopus froglet limb regeneration. Developmental Dynamics, 238, 1887-1896, 2009.
  30. Kawasaki, A., Kumasaka, M., Satoh, A., Suzuki, M., Tamura, K., Goto, T., Asashima, M. & Yamamoto, H.* Mitf contributes to melanosome distribution and melanophore dendricity. Pigment Cell & Melanoma Research, 21, 56-62, 2008.
  31. Suzuki, M., Satoh, A., Ide, H. & Tamura, K.* Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration. Developmental Biology, 304, 675-686, 2007.
  32. Yakushiji, N., Suzuki, M., Satoh, A., Sagai, T., Toshihiko, S., Kobayashi, H., Sasaki, H., Ide, H. & Tamura, K.* Correlation between Shh expression and DNA methylation status of the limb-specific Shh enhancer region during limb regeneration in amphibians. Developmental Biology, 312, 171-182, 2007.
  33. Satoh, A.*, Nakada, Y., Suzuki, M., Tamura, K. & Ide, H. Analysis of scleraxis and dermo-1 genes in a regenerating limb of Xenopus laevis. Developmental Dynamics, 235, 1065-1073, 2006.
  34. Suzuki, M., Yakushiji, N., Nakada, Y., Satoh, A., Ide H. and Tamura, K.* Limb regeneration in Xenopus laevis froglet. TheScientificWorldJOURNAL, 6, 26-37, 2006.
  35. Satoh, A., Suzuki, M., Amano, T., Tamura, K. & Ide, H.* Joint development in Xenopus laevis and induction of segmentations in regenerating froglet limb (spike). Developmental Dynamics, 233, 1444-1453, 2005.
  36. Suzuki, M., Satoh, A., Ide, H. & Tamura, K.* Nerve-dependent and -independent events in blastema formation during Xenopus froglet limb regeneration. Developmental Biology, 286, 361-375, 2005.

日本語総説

  1. 鈴木誠, 上野直人*. 生物をかたちづくる細胞運動と細胞極性. 領域融合レビュー, 4, e006, 2015.

著書

  1. Morita, H., Suzuki, M., Ueno, N., Chapter 9: Neural tube closure in Xenopus. Xenopus Development, John Wiley & Sons, 163-185, 2014.
  2. 田村宏治, 鈴木誠, 米井 小百合. 四肢の発生・再生. キーワードで理解する四肢の発生・再生イラストマップ, 羊土社, 149-158, 2005.